曹原

姓名 曹原 性别 民族
出生年月 1987.05 政治面貌 党员
职称(硕导、博导) 讲师  硕导(统计学) 职务
联系电话 156****5613 E-mail yuancao@sdut.edu.cn

 

教育和工作经历:

2006年9月-2010年6月  湖南大学 理学学士 数学与应用数学 全日制

2010年9月-2016年12月 湖南大学 理学博士 数学 推荐免试 硕博连读

2017年3月至今 山东理工大学数学与统计学院 信息与计算科学系 讲师

 

讲授课程:

专科生:《现代密码学》、《信息论基础》。

本科生:《现代密码学》、《数学应用软件与数学实验》、《数据挖掘技术》、《计算智能》、《数据分析方法与软件》、《数字图像处理》等。

研究生:《现代密码学》。

数学实验班:《软件应用培训》。

 

主要研究方向:信息论与编码理论,密码学及其应用,统计机器学习,数据挖掘与智能信息处理。

科研成果及奖励:

参与完成国家自然科学基金2项,教育部博士点基金1项,现主持国家自然科学基金青年科学基金项目一项、山东省自然科学基金博士基金项目一项。已在国内外重要的学术期刊和会议上发表(含接收)研究论文20余篇,其中SCI检索源刊论文16篇 ,EI检索源刊论文4篇。

 

主持在研项目:

山东省自然科学基金博士基金项目“Z_4上的非交换群码和Z_4上的常循环码研究”(ZR2018BA007,2018.03-2020.12)

国家自然科学基金青年科学基金项目“有限域和有限环上满足对偶特性的优化线性码的构造及其应用”(11801324,2019.01-2021.12)

 

发表学术论文:

  1. Constructing self-dual cyclic codes over Z_9 of length 3n, Journal of Applied Mathematics and Computing, 2018, doi.org/10.1007/s12190-018-1188-6;
  2. Negacyclic codes over the local ring of oddly even length and their Gray images, Finite Fields and their Applications,Finite Fields and Their Applications, 2018, 52, 67-93;
  3. Matrix-product structure of constacyclic codes over finite chain rings F_p^m{u}/, Applicable Algebra in Engineering, Communication and Computing, 2018, doi.org/10.1007/s00200-018-0352-4;
  4. Constacyclic codes of length np^s over F_p^m+uF_p^m,Advances in Mathematics of Communications, 2018, 12(2), 231-262;
  5. Left dihedral codes over Galois rings GR(p^2,m), Discrete Mathematics, 2018, 341(6),1816-1834;
  6. The Gary image of constacyclic codes over the finite chain ring F_p^m{u}/, Journal of Applied Mathematics and Computing, 2018, 57(1-2), 303-320;
  7. Complete classification of (delta+u^2*alpha)-constacyclic codes over F_2^m{u}/ of length3n, Applicable Algebra in Engineering, Communication and Computing, 2018, 29(1): 13-39;
  8. Complete classification of (delta+u^2*alpha)-constacyclic codes over F_2^m{u}/ of oddly even length, Discrete Mathematics, 2017, 340(12): 2840-2852 ;
  9. A class of left dihedral code over rings F_q+uF_q, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2017, E100A(12): 2585-2593;
  10. Cyclic codes of odd length over Z_4{u}/, Cryptography and Communications, 2017, 9(5): 599-624;
  11. The concatenated structure of cyclic codes over Z_p^2, Journal of Applied Mathematics and Computing, 2016, 52(1-2): 363-385
  12. On left quaternion codes, International Journal of Computer Mathematics, 2016, 93(10): 1629-1649;
  13. On a class of (delta+u^2*alpha)-constacyclic codes over F_q{u}/, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99A(7) 1438-1445;
  14. On a class of left metacyclic codes, IEEE Transactions On Information Theory, 2016, 62(12): 6786-6799;
  15. Concatenated structure of cyclic codes over Z_4of length 4n,Applicable Algebra in Engineering, Communication and Computing, 2016, 27(4): 279-302;
  16. Cyclic codes over F_2^m{u}/of oddly even length, Applicable Algebra in Engineering, Communication and Computing, 2016, 27(4): 259-277;
  17. Concatenated structure of left dihedral codes, Finite Fields and their Applications, 2016, 38(3): 93-115;
  18. Constacyclic F_q-linear code over F_q{l}, Applicable Algebra in Engineering, Communication and Computing, 2015. 26(4): 369-388;
  19. Eumeration and construction of addtive cyclic codes over Galois rings, Discrete Mathematics, 2015, 338(6): 922-937.

Multi-focus Image Fusion by Non-subsampled Shearlet Transform, International Conference on Image and Graphics, 2011, pp. 17-21.