高健

作者:
来源:数学与统计学院
发布时间:2021-08-29
阅览次数:1185

 

数学与统计学院导师基本信息

 

 

高健

性别

出生年月

1987.12

学历/学位

研究生/博士

职称/职务

副教授

电子邮箱

dezhougaojian@163.com

研究方向

代数编码

代表性

论著

1. Gao, Jian, Meng, Xiangrui, Fu,   Fang-Wei. Weight distribution of double cyclic codes over Galois rings,   Designs, Codes and Cryptography, Online, doi: https://doi.org/10.10 07/s10623-021-00914-3   (2021).

2. Hou, Xiaotong, Gao, Jian. A   bound on the minimum distance of generalized quasi-twisted codes, Finite   Fields and Their Applications, 67(4): 101712 (2020).

3. Lv, Jingjie, Gao, Jian. A   minimum distance bound for 2-dimension lamda-quasi- twisted codes over finite   fields, Finite Fields and Their Applications, 51: 146-167 (2018).

4. Gao, Jian, Shi, Minjia, Wu,   Tingting, Fu, Fang-Wei. On double cyclic codes over Z_4, Finite Fields and   Their Applications, 39: 233-250 (2016).

5. 高健,王现方,施敏加,符方伟. Fp[v]/(v^m-v)上线性码的Gray映射及其应用,中国科学:数学,46(9): 1329-1336 (2016).

6. Gao, Jian, Wang, Yongkang.   u-Constacyclic codes over Fp+uFp and their applications of constructing new   non-binary quantum codes, Quantum Information Processing, 17(1): 4 (2018).

7. Gao, Jian, Shen, Linzhi, Fu,   Fang-Wei. A Chinese remainder theorem approach to skew generalized   quasi-cyclic codes, Cryptography and Communications, 8(1): 51-66, 2016.

8. Gao, Jian, Fu, Fang-Wei, Gao,   Yun. Some classes of linear codes over Z_4+vZ_4 and their applications to   construct good new Z_4-linear codes, Applicable Algebra in Engineering,   Communication and Computing, 28(2):131-153 (2017).

9. Gao, Jian, Hou, Xiaotong.   Z_4-Double cyclic codes are asymptotically good, IEEE Communications Letters,   25(1):23-27 (2020).

10. Diao, Lingyu, Gao, Jian, Lu, Jiyong.   Some results on ZpZp[v]-additive cyclic codes, Advances in Mathematics of   Communications, 14(4):555-572 (2020) ESI高被引论文

 

 

科研项目

 

1、国家自然科学基金青年基金项目,11701336,线性码与自对偶码的构造研究,2018.012020.12,主持

2、国家自然科学基金数学天元基金项目,11626144,有限环上自对偶码的构造研究,2017.012017.12,主持

3、国家自然科学基金面上项目,12071264,用代数方法研究Galois自对偶码的构造和表示问题,2021.012024.12,参与

4、国家自然科学基金面上项目,11671235,有限域和有限环上具有特定代数结构的线性码类研究,2017.012020.12,参与

科研奖励

 

荣誉称号

山东理工大学“双百工程”第三层次

学术兼职

美国数学会《Mathematical   Reviews》评论员,期刊《电子与信息学报》青年编委(2021-2023

其他

 

 

 


责任编辑: